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Abstract: This study presents an analysis of the impact of asset price bubbles 
on a liquidity risk measure, the liquidity risk option premium (‘LROP’). We 
present a styled model of asset price bubbles in continuous time, and perform a 
simulation experiment of a stochastic differential equation (‘SDE’) system for 
the asset value through a constant elasticity of variance (‘CEV’) process. 
Comparing bubble to non-bubble economies, it is shown that asset price 
bubbles may cause an firm’s traditional risk measures, such as value-at-risk 
(‘VaR’) to decline, due to an increase in the right skewness of the value 
distribution, which results in the LROP to decline and therefore an underpricing 
of liquidity risk. 
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1 Introduction and motivations 

The financial crisis of the last decade has been the impetus behind a movement to better 
understand the relative merits of various risk measures, classic examples being  
value-at-risk (‘VaR’) and related quantities (Jorion, 2006; Inanoglu and Jacobs, 2009). 
The importance of an augmented comprehension of these measures is accentuated in the 
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realm of liquidity risk, as the price bubble in the housing market and the ensuing credit 
crunch was directly related to a deficit in liquidity for market participants, which in turn 
was undoubtedly one of the major catalysts for the financial crisis. We have subsequently 
learned from this that the risk models of that era failed in not incorporating the 
phenomenon of asset price bubbles, which in turn added to the severity of the downturn 
for investors and risk managers who mis-measured their potential adverse exposure to 
liquidity risk. This manifestation of model risk (The U.S. Board of Governors of the 
Federal Reserve System, 2011), wherein a modelling framework lacks a key element of 
an economic reality and therefore fails, was due to some extent to a lack of basic 
understanding. This failure of the modelling paradigm in liquidity risk spans gaps in the 
measurement, characterisation and economics of asset price bubbles. 

Since asset price bubbles are inevitably bound to burst, causing significant value loss 
to shareholders, more economic capital should be held for these bubble-bursting 
scenarios. Unfortunately, the severity of these bubble-bursting scenarios is not adequately 
captured by the standard risk measures, whose computation is based on the standard 
moments and quantiles of a firm’s value distribution over time horizons such as a year, 
over which bubble bursting is unlikely. Therefore, in view of analysing the impact of 
asset price bubbles on liquidity risk measures and economic capital determination of a 
firm, we construct various hypothetical economies, having and also not having asset price 
bubbles. We present a model of asset price bubbles in continuous time, and perform a 
simulation experiment of a stochastic differential equation (‘SDE’) for asset value 
through a constant elasticity of variance (‘CEV’) process1. The results of our experiment 
demonstrate that the existence of an asset price bubble, which occurs for certain 
parameter settings in the CEV model, results in the firm’s asset value distribution having 
a greater right skewness. This augmented right skewness in of the firm’s asset value 
distribution due to bubble expansion results in the firm’s VaR measures to decline, an 
understatement in the equity risk of the firm. We furthermore propose a liquidity risk 
measure by modelling the liquidity risk premium as the price of a down and out call 
option on the equity price, the liquidity risk option premium (‘LROP’), and show that it 
declines as we move from a non-bubble to a bubble economy. In turn, as the LROP is 
modelled as a down-and-out option on the equity value, based on these measures alone 
their declining values imply that in the presence of asset price bubbles, the result is a 
lower estimate for required liquidity risk on the part of investors and risk managers. We 
conclude that such bubble phenomena must be taken into consideration for the proper 
determination of economic capital for risk management and measurement purposes. 

‘Liquidity’ or the related risk is not always well-defined, but herein we try: 

• Definition 1: Liquidity represents the capacity to fulfil all payment obligations as and 
when they come due, to the full extent and in the proper currency, on a purely cash 
basis. 

• Definition 2: Liquidity risk is the danger and accompanying potential undesirable 
effects of not being able to accomplish the above. 

This basic definition says that liquidity is neither an amount nor ratio, but the degree to 
which a bank can fulfil its obligations, in this sense a qualitative element in the financial 
strength of a firm. A characteristic of liquidity is that is must be available all the time, not 
just on average; therefore, failure to perform, while a low probability event, implies 
potentially severe or even fatal consequences. While liquidity events occur more 
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frequently and with less severity than extreme stress events, they are sufficiently 
dangerous to disrupt business and alter the strategic direction of a firm. 

Inanoglu and Jacobs (2009) develops models for risk aggregation and sensitivity 
analysis, with an application to bank economic capital. The authors proxy for risk types 
from quarterly financial bank data submitted to the regulators: credit risk by gross 
charge-offs, operational risk by other non-interest expense, market risk by the deviation 
in four-quarter average trading revenues, interest rate risk by the deviation in the  
four-quarter average interest rate gap (i.e., rate on deposits minus loans), and liquidity 
risk by the deviation in four-quarter average liquidity gap (i.e., loans minus deposits). As 
shown in Table 1, generally this measure of liquidity risk exhibits positive and sometimes 
substantial correlation with other risk types. 
Table 1 Correlations amongst risk types – top 200 largest banks and five largest banks risk 

proxies 

Risk pair Aggregate 
Banks 

JP Morgan 
Chase 

Bank of 
America Citigroup Wells 

Fargo PNC 

Credit and 
liquidity risk 

53.43% 19.07% 47.87% 31.47% 2.30% 20.85% 

Interest rate and 
liquidity risk 

15.33% 7.37% –8.55% 11.76% –4.85% –10.22% 

Market and 
liquidity risk 

11.27% 1.56% –18.23% 6.29% –0.94% –3.21% 

Operational and 
liquidity risk 

18.97% 19.96% 9.17% 12.38% 9.14% 12.86% 

Figure 1 Liquidity measure leading up to the financial crisis – average liquidity ratios for the top 
50 banks as of 4Q09 (see online version for colours) 
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Figure 1 is reproduced from Inanoglu et al. (2015), who study the efficiency of the 
banking system in the period leading up to the financial crisis, showing that as banks 
grew larger and took on more risk they also became less efficient. The authors develop a 
liquidity measure as the ratio of liquid assets to total value of banking book. Note the 
secular decline in liquidity during 20 years going into recent crisis (except a 1990 spike), 
more recently a rapid and massive increase from the depth to the end of the crisis. 

In Figure 2, we present a conceptual road map for defining and distinguishing 
different notions of liquidity. First, one may think of short-term liquidity, which has the 
function of securing payments. This represents the capability of a bank to fulfil payment 
obligations as and when they occur (or ‘situation-specific’ liquidity), which is a strong 
secondary condition related to profitability, also known as the ‘classical view’ concerning 
liquidity. We may distinguish this from long-term liquidity, where the objective is 
funding at a reasonable cost. The key element in this regard is the capacity to borrow 
long-term funds at appropriate spreads to support asset growth (i.e., ‘structural liquidity’), 
and at present very much the focus of most banks. These can both be distinguished from 
the concept of tradability, which is the liquidity with respect to assets. The focus here is 
upon the market capacity to provide the base for borrowing in money and capital 
markets, and the impetus for the heightened consideration is on danger cause by major 
events (e.g., 9/11, Lehman Bankruptcy). 

Figure 2 Alternative conceptualisations and characterisations of liquidity (see online version  
for colours) 

 

In Figure 3, we depict how liquidity risk, considered holistically (i.e., as just discussed in 
Figure 2 comprising call, term, funding and market liquidity risk), may be viewed as 
sitting at the nexus of the risk management universe. First, we may consider the 
interaction of operational and liquidity risk, where we define the former in terms of 
phenomena such as inadequate organisational structures, incorrect data or inadequate 
models, etc. Operational risk events can lead to nervousness amongst creditors or 
customers, resulting in both difficulties with short and long term financing, including 
issues with the either the tradability of assets or with the ability to participate in capital 
markets without undue frictions. Market risk (e.g., interest rate, price or option risk) may 
impact liquidity through the capital markets channels as well, a prime example being a 
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severe market dislocation that results in an institution losing the faith of the markets, and 
subsequently experiencing a liquidity crunch (e.g., the collapse of Lehman Brothers in 
2008). Credit risk (e.g., lending, counterparty or issuer risk) is central to many financial 
institutions that lend in the syndicated loan markets, or that have large corporate bond 
portfolios, and this is intimately connected to all types of liquidity risk – for example, 
consider the issues faced by banks trying to maintain funding from skittish investors, in 
the wake of the sub-prime crisis. The phenomenon of event risk – examples being legal, 
political or issuer risk – can impact liquidity risk through varied channels, an example 
being the impact of the Asian financial crisis on Japanese banks’ market liquidity 
position in the late 1990s. Business risk, commonly defined as either strategic or 
reputational risks, has an impact upon liquidity risk through the reduction in investor 
confidence – consider for example a company that enters into a line of business in which 
it is unable to penetrate the market; this can result in the need to either raise funding or 
sell off assets in order to make up for losses, which could either raise the cost of capital, 
or could result in having to dispose of assets at a discount. Finally, we may consider what 
is termed customer risk, which include items such as call, forward or behavioural risks. 
Consider the example of a bank that does business with a criminal organisation and this 
becomes public knowledge – such an occurrence would likely result in very costly fines, 
which could in turn place the firm under liquidity pressures of various types. 

Figure 3 Liquidity risk in relation to the risk management universe (see online version  
for colours) 

 

We may consider some further conceptual considerations or stylised facts regarding 
liquidity risk. Liquidity risk is generally thought to be a function of these factors: 

• volume and tenor of assets as dictated by business policy 

• extent of tenor mismatches between assets and liabilities 

• stability of the deposit base (e.g., retail but short term and low volume) 

• optionality of bank assets (e.g., undrawn commitments) 
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• persistence of a liquidity gap with the implication that the bank will have to get 
funding 

• terms of later financing not known in advance 

• even marketable assets having different liquidity characteristics over time 

• willingness of the market to fund dependent upon the future state of the bank 

• dependence of the bank’s financial state and perception of such in the market upon 
inter-related data (e.g., risk profile, solvency, profitability and trend) 

• bank’s forecast of its own state and the market perception of this are both risky and 
uncertain. 

We may also consider alternative ways to look at liquidity risk. First, there is the level of 
aggregation, which may include several dimensions such as amount, currency and time 
horizon. It is advisable to maintain as detailed information as possible, even if not 
required by controllers or supervisors. Second, there is the concept of natural (i.e., legal 
maturities) vs. artificial (i.e., shiftability and marketability – the ‘business view’) 
liquidity, and the importance of meeting customers’ needs and keeping the franchise 
intact (not just surviving as a legal entity). There are also optionalities, which apply not 
only to traded or OTC options, but any bank commitment that puts the bank in a position 
of an option seller exposed to unpredictable cash requirements. Finally, there is the 
impact of business policy on liquidity, namely the need for a dynamic perspective, and 
the important distinction between accounting and actual cash flows. 

Another aspect to consider is the interconnection between liquidity risk and other 
risks. Solvency is the condition of sufficient capital to cover loss, a pre-condition but not 
sufficient for liquidity, as perceived solvency can impact liquidity through the actions of 
investors or customer. Then there is the distinction between liquidity and interest rate 
risk, as prima facie it seems that they can be treated similarly with respect to gap analysis, 
but for a typical bank’s exposure it is unlikely that they form a predictable relationship. 
As an example, consider prepayment: here we have excess liquidity but reinvestment rate 
risk; also, a case where a CP line is triggered, which may have hedged rates with forward 
rate agreements, but the actual exchange of cash gives rise to liquidity risk.. Another 
important distinction is liquidity as opposed to market liquidity risk, as the ability to 
transform marketable assets into cash depends upon the breadth and depth of markets, 
which in turn depends on the quality of the issuer, market conditions and asset 
characteristics. Finally, we may consider the two alternative ways to close the liquidity 
gap: international financial institutions’ ‘asset driven’ vs. savings banks ‘liability driven’ 
strategies, but however note that the latter depends on behaviour of lenders, and on name 
of institution and market. 

The quantification of liquidity risk encompasses four key aspects: 

• behaviour of the balance sheet structure under various circumstances 

• basic conditions required when applying a dynamic business perspective 

• forecasting the most likely liquidity gaps 

• linking these findings to liquidity policy. 
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Two basic occurrences lead to increased liquidity risk: 

• assets marketable assets loose quality or segment for which is congested 

• liabilities funding potential declines. 

Key components of a quantitative liquidity risk framework include: 

• dynamism: planned and future developments need to be accounted for 

• distinctiveness between normal and stressed environments 

• accounting for that circumstances can vary in quality 

• accounting for the heterogeneity of impact upon particular banks 

• forward looking orientation. 

An outline for this paper is as follows. Section 2 presents a review of the literature on risk 
measurement and also on liquidity risk. Section 3 presents our model incorporating the 
effect of asset price bubbles into the measurement of liquidity risk. Section 4 describes 
the results of our simulation experiment while Section 5 summarises the implications of 
our analysis for liquidity risk management and directions for future research. 

2 Review of the literature 

Modern risk modelling (e.g., Merton, 1974 for the case of credit risk) increasingly relies 
on advanced mathematical, statistical and numerical techniques to measure and manage 
risk in credit portfolios. This gives rise to model risk (The U.S. Board of Governors of the 
Federal Reserve System, 2011), defined as the potential that a model used to assess 
financial risks does not accurately capture those risks, and the possibility of understating 
inherent dangers stemming from very rare yet plausible occurrences perhaps not in 
reference datasets or historical patterns of data2, a key example of this being the inability 
of the risk modelling paradigm to accommodate the phenomenon of asset price bubbles. 

The relative merits of various risk measures, classic examples being VaR and related 
quantities, have been discussed extensively by prior research (Jorion, 1997, 2006). Risk 
management as a discipline in its own right, distinct from either general finance or 
financial institutions, is a relatively recent phenomenon. A general result of mathematical 
statistics due to Sklar (1956), allowing the combination of arbitrary marginal risk 
distributions into a joint distribution while preserving a non-normal correlation structure, 
readily found an application in finance. Among the early academics to introduce this 
methodology is Embrechts et al. (1999, 2002, 2003). This was applied to credit risk 
management and credit derivatives by Li (2000). The notion of copulas as a 
generalisation of dependence according to linear correlations is used as a motivation for 
applying the technique to understanding tail events in Frey and McNeil (2001). This 
treatment of tail dependence contrasts to Poon et al. (2004), who instead use a data 
intensive multivariate extension of extreme value theory, which requires observations of 
joint tail events. 

Since the 2007 crisis, the mathematical finance literature has made significant 
advances in the modelling and testing of asset price bubbles (Hong et al., 2006; Jarrow 
and Protter, 2010; Protter, 2011). Inanoglu and Jacobs (2009) contribute to the modelling 
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effort by providing tools and insights to practitioners and regulators, utilising data from 
major banking institutions’ loss experience, exploring the impact of business mix and 
inter-risk correlations on total risk, and comparing alternative established frameworks for 
risk aggregation on the same datasets across banks. Jarrow and Silva (2014) apply these 
new insights to determine the impact, if any, that asset price bubbles have on the common 
risk measures used in practice for the determination of equity capital, which we extend to 
the realm of credit risk. Jacobs (2015) extends the latter framework to credit risk 
measurement in a Merton (1974) structural model framework, wherein the author 
demonstrates that in the presence of asset price bubbles, standard credit risk quantile 
measures (e.g., credit VaR) are understated. 

There is rather limited literature on the measurement, modelling and management of 
liquidity risk that are relevant to this current research, but we summarise a few key 
studies herein. Knies (1876) stresses the necessity for a cash buffer to bridge negative 
payment gaps between inflows and outflows where timing is uncertain. Stutzel (1959) 
provides further discussions focusing primarily on basic considerations between liquidity 
and solvency. A new focus emerged starting in mid-1990s was on specific issue of 
liquidity risk management, mainly dealing with policy (Matz, 2002; Baretsky et al., 
2008). The Basel Committee on Banking Supervision (BCBS, 2006) provide supervisory 
expectations and best practices for managing liquidity risk in financial institutions. 
Fielder (2007), Hiedorn and Schamlz (2008) and Reitz (2008) provide quantitative 
frameworks for measuring and managing liquidity risk. Duttweiler (2008) provides a 
holistic view of liquidity risk including quantitative methods such as liquidity-at-risk 
(‘LaR’). 

3 An option theoretic model for asset price bubbles and the pricing of 
liquidity risk 

We model the evolution of asset prices, incorporating the phenomenon of price bubbles, 
using the approach of Jarrow et al. (2007) and Jarrow and Silva (2014). The setting is a 
continuous trading economy, without loss of generality having a finite horizon [0, τ], with 
randomness described by the filtered probability space (Ω, ℑ, F, P) where we define: the 
state space Ω, the σ-algebra ℑ, the information partition F = {ℑt}t∈[0,τ], and the physical 
probability measure P (or actuarial, as contrasted to a risk-neutral probability measure, 
commonly denoted by the symbol Q). We assume, again without loss of generality and 
for the purpose on focusing on the application to loss, a single asset value process 
{Vt}t∈[0,τ] that is adapted to the filtration F. Note that this could also represent a share of 
stock owned by a representative equity investor, which is a claim on the single productive 
entity or firm in this economy. In our options model of the liquidity risk premium, this is 
a postulated reference process (e.g., an equity index) that shadows the perceived value of 
the illiquid asset, and we are concerned that long-term investors may withdraw funds if it 
falls below a threshold. In the general setting, Vt follows an Ito diffusion process 
(Øksendal, 2003) having the following SDE representation: 

( ) ( ), , ,t t tdV μ V t dt σ V t dW= +  (3.1) 

 



   

 

   

   
 

   

   

 

   

   160 M. Jacobs Jr.    
 

    
 
 

   

   
 

   

   

 

   

       
 

where μ(Vt, t) is the instantaneous drift process, σ(Vt, t) is the instantaneous diffusion 
process, Wt ~ N(0, t) is a standard Weiner process (or a Brownian motion process) on the 
filtered probability space (Ω, ℑ, F, P), and dWt are its infinitesimal increments. In order to 
complete this economy, we assume that there exists a traded money market account 
process, Mt which grows according to a risk-free rate process rt, also adapted to the 
filtration F of the aforementioned probability space: 

{ }
0

exp
t

t s
s

M r ds
=

= ∫  (3.2) 

Without loss of generality we assume that the asset Vt has no cash-flows, which could 
have been incorporated into the model by assuming a dividend process and studying the 
dividend-reinvested stock price process (Back, 2010), but to maintain simplicity of 
notation we do not do not do so. 

We model an economy potentially having an price bubbles through the assumption 
that the risky asset’s prices follows a CEV process, as in Jarrow et al. (2014), which is the 
following restricted version of the Ito diffusion process in (3.1): 

θ
t t ttdV μV dt σV dW= +  (3.3) 

where μ is the drift, σ is the volatility and the CEV parameter θ governs the state of the 
risky asset price process exhibiting a price bubble or not. An asset price bubble is defined 
as the situation where the market price for an asset exceeds its fundamental value (Jarrow 
et al., 2007, 2010a, 2010b), the latter being defined conventionally as the price an 
investor would pay to hold the asset perpetually without rebalancing. This fundamental 
value is determined through imposing some additional structure on the economy, 
requiring at minimum two additional assumptions. First, we need to assume the absence 
of any arbitrage opportunities (Delbaen and Schachermayer, 1998), which guarantees the 
existence of a risk-neutral probability Q measure equivalent to P, such that the asset value 
process Vt normalised by the money market account Mt is a local Martingale process: 

( )
*

*,τ t τtQ
t t

t t

VVE V t t
M M

−

′

⎡ ⎤⎡ ⎤
′⎢ ⎥ℑ = = ∀ <⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
 (3.4) 

where *
*( , )

τ
t t τV V −≡  is the stopped process of Vt and τ*: Ω → [0, +∞] is a sequence of 

stopping times that satisfy certain technical condition.3 The mechanism in (3.4) involving 
the risk-neutral probability measure affords us a means of computing present values 
where we shift the mass of the probability distribution (magnitude of the cash-flows) 
such that we can recover the same prices as under actuarial measure with the original 
cash-flows – but note that Q is arbitrary. In order to pin down this risk-neutral 
distribution, we assume from this point on a complete market, which means that that 
enough derivatives on the risky assets trade in order to replicate its cash flows in a 
suitably constructed arbitrage portfolio. The first condition is satisfied because the CEV 
process given in expression (3.3) admits an equivalent local martingale measure, so by 
construction it satisfies the absence of arbitrage opportunities4. Under this incremental 
structure that we impose upon the economy, an asset’s fundamental value FVt given the 
time t information set ℑt, is defined as the asset’s discounted future payoff from 
liquidation at time at horizon τ > t: 
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[ ]| τQ
t t t t t

τ

VFV V E M
M
⎡ ⎤

ℑ = ℑ⎢ ⎥
⎣ ⎦

 (3.5) 

It follows that we may define the asset’s price bubble B [ ]V
t •  as the difference between 

the market price Vt and its fundamental value FVt: 

[ ] [ ]BV
t t t t t tt V V FV Vℑ ≡ − ℑ  (3.6) 

Since as a conditional expectation, the fundamental value normalised by the value of the 
money market account is a martingale under Q, a bubble exists if and only if the asset’s 
normalised price is a strict local martingale and not a martingale under Q. In the case of 
the CEV process, it can be shown (Jarrow et al., 2011) that the asset’s normalised price 

( )t

t

V
M

 is a martingale under Q when θ ≤ 1 in (3.3) (i.e., no asset price bubble), and a 

strict-local martingale under Q where θ > 1 in that equation (i.e., an asset price bubble). 
Note that the boundary case of θ = 1 yields the geometric Brownian motion underlying 
the Black-Scholes-Merton (‘BSM’) option pricing model (Merton, 1974), which is called 
the BSM economy, and can be shown to exhibit no price bubble (Delbaen and 
Schachermayer, 1995). In such case we have: 

( )t t t tdV μ r V dt σV dW= − +  (3.7) 

It follows that the reference process is log-normally distributed 
0

ln( ) ~ ([tV N μ r
V

− −  

2 21 ] , ).
2
σ t σ t  We will illustrate how to model the LROP in the BSM framework following 

Golts and Kritzman (2010), in which we can obtain a closed-form solution. Let the 

absolute barrier be denoted as B ≤ V0 and the relative barrier be denoted as 
0

,Bc
V

=  the 

latter being the complement of the percent decline that triggers the option to be in the 
money. Therefore we model this contingent claim as a first passage option having the 
following payoff at maturity τ and strike price K: 

0

[0, ] 0

0
min t rtt τ

cV B
V

cV e B K∈

> = ⇒⎧
= ⎨≤ ⇒ =⎩

 (3.8) 

In the case of the BSM model we get the following closed form solution: 

( ) ( ) ( )( )0 2 0 1Π , , , , rτ rτ
FP V B σ r τ e KN d V e N d−= − + −  (3.9) 

where 
2

0
1 2

1 ln( ) ( )
2

V σd τ r d σ τ
Kσ ρ

= + + = +  and the price of the option per $1 

notional is given by: 

( )0
,1

0

Π , , , ,
Π (1, , , , ) 1FP

FP
V B σ r τ

B σ r τ
V

= ≤  (3.10) 
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Assume a T period investment horizon with m equally spaced liquidity intervals of length 
τ = Ti – Ti–1 for i = 1,..,m, which implies that 0 = T0 ≤ T1 ≤ … ≤ Tm = T = mτ. We model 
an illiquid instrument as a long position in the liquid reference process with price V* < V0, 
and a short position in an m period liquidity option of value V0 – V*, a collection of m – 1 
first passage options (also known collectively as a ‘cliquet option’). If we define a cash 
call event as a log return of –100% over the entire period T, then we can solve for the 
barrier as a proportion of initial value as: 

0
expB τc

V T τ
⎛ ⎞

= = −⎜ ⎟
−⎝ ⎠

 (3.11) 

This shows the barrier to be higher (lower) for investors with shorter (longer) liquidity 
intervals τ, and to be increasing in maturity T. Denote C(t) as the cash in the replicating 
portfolio at period t; then for Ti – T (at T the asset matures and no payoff) the payoff on 
the ith option is: 

[ ]

( )
( ) ( ) ( )11

1

, 1 1

0
min

i ii i

i
t r T Tt T T i i

cC T
V

cC T e C T−−

−

−∈ − −

⎧> ⇒
= ⎨

≤ ⇒⎩
 (3.12) 

The normalised price of the option in the first interval is just as before: 

( ) ( ),1 0 0 0Π , , , , Π 1, , , , ΠFP FPV B σ r τ B σ r τ V V=  (3.13) 

The expected cash position at the end of the initial period is: 

( ) ( )1 1 1

1
0 1 0

[0, ]
Pr min (1 Π)rT rT rT

e t
t T

E C V e Be V B S e
∈

= − ≤ = −  (3.14) 

Continuing on this reasoning, and imposing that under risk-neutral measure 10 ( )TE V =  
1( )

0 0 ,μ r TV e V− =  as μ = r, we get for small Π the approximation: 

( ) ( )
1

1
, 1 0 0 0

0

Π , , , , Π (1 Π) 1 (1 Π) ( 1)Π
m

k m
FP m

k

V B σ r τ V V m
−

−
−

=

= − = − − ≈ −∑  (3.15) 

If the number of liquidity intervals is 1,T
τ
=  then the barrier is 

0
0,Bc

V
= =  the value of 

the liquidity option is zero and there is no price difference between the liquid and illiquid 
assets. Conversely, if the investor needs immediate liquidity τ = 0 (i.e., an infinite number 

of liquidity intervals), then the barrier is 
0

1,Bc
V

= =  and the price of the liquidity option 

is 100% of the notional amount Π(•) = V0. We now develop various risk measures with 
respect to the reference process, which will help us gauge the inaccuracy of standard 
approaches as we move from a normal to a bubble economy. First, we define the 
expected value of the reference process EVτ as the expectation of this random variable 
under actuarial probability measure: 

[ ]P
t τ tEV E V= ℑ  (3.16) 
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We may estimate this quantity as EVτ through numerical integration over np simulations, 
which is simply the sample mean, and is a consistent and unbiased estimator of this 
sample moment: 

1

1 pN
i

τ τ
p i

EV V
N =

= ∑  (3.17) 

Similarly, we may obtain estimators of the population standard deviation V
τσ  and of the 

population normalised skewness V
τς  of this distribution, defined as: 

( )2V P
τ τ τ tσ E V EV⎡ ⎤= − ℑ⎣ ⎦  (3.18) 

( )

( )

3

2
3
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τ τ tV

τ
ECL
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E V EV
ς

σ

⎡ ⎤− ℑ⎣ ⎦=  (3.19) 

by their sample analogues ˆV
τσ  and ˆ :V

τς  

2

1 1

1 1ˆ
1

p pN N
V i i
τ τ τ

p pi i

σ V V
N N= =

⎡ ⎤
= −⎢ ⎥

− ⎢ ⎥⎣ ⎦
∑ ∑  (3.20) 

[ ]

( )

3

1
2

3

1

ˆ
ˆ

pN
i
τ τ

p iV
τ

V
τ

V EV
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=

−

=
∑

 (3.21) 

These statistics are estimates of the reference process distribution’s moments under the 
physical probability measure P, characterising the changes in the value of the index that 
includes both positive and negative mark-to-market values. In a risk management 
application, we are actually only interested in losses, to which end we seek to understand 
the left tail of the value distribution, and compute various low quantile risk measures, 
such as the VaR or conditional value-at-risk (‘CVaR’). Apart from asset price bubbles, 
even though its limitations re-widely known (Alexander, 2001; Jorion, 1997), such 
measures are widely used in the industry5. An estimator for the VaR at a given 
confidence level c is given by: 

( )( ) Quantile pτ i k N cVaR c ≤ ≤=  (3.22) 

where 

( )
1

1Quantile ( ) sup
p

kp τ

N

i k N c V x
x p k

c I c
N≤ ≤ ≤

=

⎧ ⎫⎡ ⎤⎪ ⎪
= ≤⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑  (3.23) 

where kτV xI ≤  is an indicator function that takes the value 1 if k
τV x≤  and 0 otherwise. We 

may also define a conditional CVaR measure as the expected value conditional on value 
being less than or equal to VaR at confidence level c: 
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∑

∑
 (3.24) 

4 A simulation experiment 

We demonstrate the impact of asset price bubbles on a firm’s risk measures, as defined in 
the previous section (i.e., VaR and CVaR), as well as on the measure of liquidity risk the 
LROP, through a stochastic simulation experiment. Simulation is needed to determine the 
probability distribution of the asset value (or reference process), and ultimately the 
LROP, because an analytic solution for the firm value’s probability distribution using  the 
CEV process is unavailable (Emanuel and MacBeth, 1982; Schroder, 1989) except for 
special bases like the BSM economy.6 In our experiment we fix the time period for the 
standard risk measures to be 250 trading days or one year, which is conventional for 
economic and regulatory market risk capital calculations, with subintervals of one 
business week or five trading days for the lock-up period. 

We perform the simulation experiment through constructing a collection of different 
economies, some with bubbles and some without, by varying the CEV parameter θ from 
0.50 to 2.0 in steps of size 0.10. In each of these different economies, we compute the 
standard risk measures to determine the impact that bubbles have on their values. We fix 
the other parameters of the simulation in the base case as follows. Asset value Vt is 
initiated at a normalised value of one V0 = 1, with a drift rate of 5% per annum, μ = 0.05, 
and a volatility parameter of 20% per annum, σ = 0.20. The liquidity call event is 
assumed to occur is asset value at the horizon is below the debt threshold of 0.70, Vτ ≤ c = 
0.70. The results of our analysis in the base case are tabulated in Table 2 and illustrated in 
Figure 4. In Table 2, we present the descriptive statistics and quantile loss measures for 
the reference (or equity price) process and the LROPs against the values of the CEV 
parameter. Figure 4 plots some key credit loss measures as well as the LROP against the 
values of the CEV parameter. In the Appendix, Figures A.1 through A.16 plot the paths 
and distributions of the reference processes. 

We can see from the results that all of the standard risk measures decrease as we 
increase the CEV parameter into the region where we have an asset price bubble, and the 
LROP decreases monotonically, as this parameter grows. This is driven by a change in 
the asset value process as θ rises. Note that some features of the asset value distribution 
are largely unchanged, such as the mean (just a little above 105% across the board with 
no trend) or the standard deviation (about 21–22% across the board with no trend), as we 
increase θ. Interestingly, while the median of the distribution reduces mildly relative to 
the mean as we increase θ (from around 105% to 101%, reflecting the increased right 
skewness), the normalised skewness of the distribution increases substantially in θ: 
doubling from 0.3 to 0.6 as we go from CIR to GBM, and then nearly tripling again to 1.6 
at θ = 2. Note further that we see increasing asset value skewness in θ even when in the 
non-bubble region θ ∈ [0.5, 1.0], with skewness doubling from 0.29 to 0.62 going from  
θ = 0.5 to θ = 1, and then increasing by greater than 1 and a 1/2 times to 1.65 at θ = 2. 
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Table 2 Distributional statistics, alternative risk measures and liquidity risk option premia – 
stochastic simulation of CEV asset value process (V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) 
for various values of the CEV parameter (θ = {0.50 + i × 0.10 for i = 0, 1,…,15}) 
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Table 3 Sensitivity analysis of liquidity risk option premia – stochastic simulation of CEV 
asset value process for various values of the CEV parameter (θ = {0.50 + i × 0.10 for i 
= 0, 1,…,15}) 
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Figure 4 Alternative risk measures and liquidity risk option premia – stochastic simulation of 
CEV asset value process (V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for various values of the 
CEV parameter (θ = {0.50 + i × 0.10 for i = 0, 1,…,15}) (see online version for colours) 

 

Figure 5 Sensitivity analysis of the liquidity risk option premia to lock-up period and liquidity 
interval – stochastic simulation of CEV asset value process for various values of the 
CEV parameter (θ = {0.50 + i × 0.10 for i = 0, 1,…,15}) (see online version for colours) 
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Figure 6 Sensitivity analysis of the liquidity risk option premia to reference process volatility and 
liquidity event threshold – stochastic simulation of CEV asset value process for various 
values of the CEV parameter (θ = {0.50 + i × 0.10 for i = 0, 1,…,15}) (see online 
version for colours) 

 

In the bottom panel of Table 2 we show the various quantile loss metrics as a functions of 
the CEV parameter, and observe that all of the standard measures are declining in θ. For 
instance, for the 90.0th percentile VaR, it decreases monotonically in θ from 20.5% for  
θ = 0.50, to 19.9% for θ = 1.00, and finally to 19.3% for θ = 2.00. Furthermore, we can 
see from Table 2 and from Figure 4 that the decline of the risk measures in θ becomes 
more pronounced as we increase the quantile of the distribution. For instance, for the 
99.9th percentile VaR, it decreases monotonically in θ from 51.4% for θ = 0.50, to 44.1% 
for θ = 1.00 (a decline of about 10%, vs. 0.25% for the 90th percentile), and finally to 
37.8% for θ = 2.00 (a decline of about 20%, vs. 0.50% for the 90th percentile). This is 
consistent with the behaviour of the skewness of the reference asset value process, which 
also increases monotonically in θ as described previously. Ultimately, this is reflected in 
the accelerating decline of the LROP in θ from 4.28% for θ = 0.50, to 3.33% for θ = 1.00, 
and finally to 1.32% for θ = 2.00. We conclude that as we enter an asset price bubble 
with increased right skewness of this process, VaR measures are underestimated, and 
liquidity risk is understated. In Figure 4, we plot the LROP against the values of the CEV 
parameter, as well as the VaR risk measures, where these patterns can be gleaned 
optically, a linearly declining LROP that reflects declining the declining loss metrics, 
with the latter decline becoming accentuated as we consider less extreme left-tail 
percentiles of the reference value process. 

In Table 3, and in Figures 5 through 6, we present a sensitivity analysis of our model, 
across a range of settings for the CEV parameter. The sensitivities considered are as 
follows: 
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• increase (decrease) liquidity interval (‘LI’) to 1 month (1 day) 

• increase (decrease) lockup period (‘LP’) to 4 years (1 quarter) 

• increase (decrease) reference process volatility (σ) to 30% (15%) 

• increase (decrease) liquidity event threshold (c) to 80% (60%). 

First let us consider the effect on the LROP of decreasing the LI from 1 week to 1 day, 
which is shown in the second and third panels of Table 3. We observe that as the LI is 
shortened, the LROP increases anywhere from 5% to 25%, depending on the value of θ. 
This increase in LROP is intuitive, as when we shorten the LI there is an increased 
probability of a liquidity call. However, it is important to note that there is no discernable 
pattern in the change of the relationship between the LROP and CEV parameter, which 
can be measured by examining the change in the LROP from the base case: in the  
non-bubble region θ ∈ [0.50, 1.00] the percent changes range in about [10%, 25%], 
whereas in bubble region θ ∈ [1.10, 1.50] the percent changes range in about [6%, 20%], 
and finally in the extreme bubble region θ ∈ [1.60, 2.00] the percent changes range in 
about [7%, 25%]. Conversely, we observe that as the LI is lengthened, the LROP 
decreases anywhere from 8% to 25% depending on the value of θ. This decrease in the 
LROP is intuitive, as when we lengthen the LI there is a decreased probability of a 
liquidity call. Again, as with the increase in the LI, it is important to note that there is no 
discernable pattern in the magnitude of change in the slope of the relationship between 
the LROP with respect to the CEV parameter, as measured by the percent change in the 
LROP from the base case: in the non-bubble region θ ∈ [0.50, 1.00] the percent  
changes range in about [–23%, 10%], whereas in bubble region θ ∈ [1.10, 1.50] the 
percent changes range in about [–30%, 9%], and finally in the extreme bubble region  
θ ∈ [1.60, 2.00] the percent changes range in about [–25%, –12%]. In summary, when we 
sensitise the models to shifts in the LI, the signs of the relationship are intuitive, but there 
appears to be no relationship the magnitude of the shift in the LROP from the base case 
and the value of the CEV parameter (i.e., our status as a bubble vs. a non-bubble 
economy); said differently, the slope of the relationship between the LROP and CEV 
parameter remains unchanged when we shock LI in either direction. 

In our second sensitivity analysis, let us consider the effect on the LROP of 
increasing the LP from one to four years, which is shown in the fourth and fifth panels 
from the top panel of Table 3. We observe that as the LP is increased, the LROP 
increases anywhere from 0% to 22% depending on the value of θ, which is intuitive in 
that as when we lengthen the LP there is a greater probability of a liquidity call. 
However, unlike in the case of decreasing the LI, the LROP is decreases at slower rate 
with respect to increases in the CEV parameter, which can be measured by the percent 
change in the LROP at different point: in the non-bubble region θ ∈ [0.50, 1.00] the 
percent changes range in about [11%, 22%], whereas in bubble region θ ∈ [1.10, 1.50] 
the percent changes range in about [3%, 19%], and finally in the extreme bubble region  
θ ∈ [1.60, 2.00] the percent changes range in about [0%, 9%]. Conversely, we observe in 
the fourth panel from the top in Table 3 that as the LP is decreased from a year to a 
quarter, the LROP decreases anywhere from 8% to 28% depending on the value of θ. The 
decrease in the LROP is intuitive in decreasing LP is intuitive, as when we reduce the LP 
there is a decreased probability of a liquidity call. However, it is important to  
note an asymmetry in how the relationship between the CEV parameter and the LROP 
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changes as we change the LP, in that as with shocking the LI in either direction,  
with the lengthening of the LP there is no clear pattern in the relationship between the 
magnitude of the increase from the base and the CEV parameter: in the non-bubble 
region θ ∈ [0.50, 1.00] the percent changes range in about [–25%, –14%], whereas in 
bubble region θ ∈ [1.10, 1.50] the percent changes range in also about [–25%, –14%] and 
finally in the extreme bubble region θ ∈ [1.60, 2.00] the percent changes range in about 
[–28%, –8%]. In summary, when we sensitise the models to shifts in the LP, the signs of 
the relationship are intuitive, but there appears to be an asymmetry with respect to 
relationship between the magnitude of the shift and that of the CEV parameter, as when 
we increase (decrease) the LP there is an inverse relationship (a lack of relationship) to 
the value of the CEV parameter, or said differently a decrease (no change) in the slope of 
the relationship. 

In our third sensitivity analysis, let us consider the effect on the LROP of shocking 
the reference process volatility σ, which is shown in the sixth and seventh panels from the 
top panel of Table 3. When we increase the reference process volatility from 20% to 
30%, we observe that in general the LROP increases anywhere from two to seven times 
depending on the value of θ, which is intuitive, as when we increase reference process 
volatility there is a greater probability of a liquidity call. However, unlike in the case of 
the LI or LP sensitivity, in the change in the LROP with respect to increases in the CEV 
parameter is more pronounced relative to the base case: in the non-bubble region  
θ ∈ [0.50, 1.00] the percent changes range in about [130%, 330%], whereas in bubble 
region θ ∈ [1.10, 1.50] the percent changes range in about [330%, 470%], and finally in 
the extreme bubble region θ ∈ [1.60, 2.00] the percent changes range in about [450%, 
680%]. Conversely, we observe in the seventh panel that as σ is decreased from 20% to 
15%, in general the LROP decreases anywhere from 77% to 94% depending on the value 
of θ, which is intuitive as when we reduce σ there is a decreased probability of a liquidity 
call. Furthermore, the magnitude of the decrease in LROP is increasing with respect to 
the CEV parameter relative to the base case (although the change in the strength of the 
relationship is not as robust as for increases in volatility): in the non-bubble region  
θ ∈ [0.50, 1.00] the percent changes range in about [–85%, –77%], whereas in bubble 
region θ ∈ [1.10, 1.50] the percent changes range in also about [–90%, –88%] and  
finally in the extreme bubble region θ ∈ [1.60, 2.00] the percent changes range in about 
[–94%, –91%]. In summary, when we sensitise the models to shifts in the σ, the signs of 
the relationship are intuitive, with LROP directly related to the changes in σ. However, 
unlike the case of LI (for both increases and decreases) or LP (only to the downside), the 
magnitude of the shift increases in the CEV parameter, although this relationship is 
stronger with respect to upward as opposed to downward shifts in σ. 

In our fourth sensitivity analysis, let us consider the effect on the LROP of shocking 
the liquidity event threshold c. The impact of the increase from 70% to 80% is shown in 
the eigth panel from the top panel of Table 3. We observe that as c is increased, in 
general the LROP increases anywhere from two to nine times depending on the value of 
θ, which is intuitive, as when we increase the liquidity event threshold there is a greater 
probability of a liquidity call. As in the case of σ sensitivity, and unlike in the cases of LI 
(both upward and downward) or LP (to the downside) sensitivity, the change in the 
LROP relative to base is becoming more pronounced with respect to increases in the 
CEV parameter: in the non-bubble region θ ∈ [0.50, 1.00] the percent changes range in 
about [68%, 400%], whereas in bubble region θ ∈ [1.10, 1.50] the LROPs range in about 
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[165%, 460%], and finally in the extreme bubble region θ ∈ [1.60, 2.00] the percent 
changes range in about [330%, 870%]. However, note that at this level of the c, the 
LROP is not declining even close to monotonically in the CEV parameter: in the  
non-bubble region θ ∈ [0.50, 1.00] the LROPs range in about [7%, 16%], whereas in 
bubble region θ ∈ [1.10, 1.50] the LROPs range in about [6%, 15%], and finally in the 
extreme bubble region θ ∈ [1.60, 2.00] the LROPs range in about [9%, 14%]. 
Conversely, we observe in the bottom panel that as c is decreased from 70% to 60%, in 
general the LROP decreases anywhere from 86% to 100% depending on the value of θ, 
which is intuitive as when we reduce c there is a decreased probability of a liquidity call. 
Furthermore, the magnitude of the decrease in LROP from base is increasing with  
respect to the CEV parameter (although the strength of the relationship is not as robust as 
for decreases in volatility): in the non-bubble region θ ∈ [0.50, 1.00] the percent  
changes range in about [–91%, –84%], whereas in bubble region θ ∈ [1.10, 1.50] the 
percent changes range in about [–94%, –90%] and finally in the extreme bubble region  
θ ∈ [1.60, 2.00] the percent changes range in about [–100%,–96%]. In summary, when 
we sensitise the models to shifts in the c, the signs of the relationship are intuitive, with 
LROP directly related to the changes in c. Furthermore, as with the case in shocking σ, 
the magnitude of the shift relative to the base case increases in the CEV parameter, 
although this relationship is stronger with respect to upward as opposed to downward 
shifts in c. 

5 Conclusions 

Our objective in this research has been to explore the impact of asset price bubbles on 
liquidity risk, which has implications for economic capital determination for a financial 
institution. In order to achieve this objective, we have modelled alternative scenarios of 
bubble vs. non-asset bubble economies, in continuous time through a simulation 
experiment considering a CEV process SDE for asset value. We have demonstrated in 
this hypothetical exercise that asset price bubbles may cause a decline in a firm’s VaR 
risk measure, due to an increased right skewness of the value distribution. In order to 
investigate the effect of this phenomenon on liquidity risk we modelled the LROP, and 
demonstrated its decline in transitioning from non-bubble to a bubble economies. We 
conclude that in episodes of asset price bubble phenomena, liquidity risk is underpriced, 
and this should be accounted for in order to properly determine economic capital for risk 
management and measurement purposes. 

When we sensitise the models to shifts in the various parameters (LI, LP, σ or c) the 
signs of the relationships are intuitive, but strength of the relationship between the LROP 
and the CEV parameter (i.e., the change in the LROP relative to the base case) varies 
across being shocked. The implication is that the model sensitivity cannot always tell us 
if we are entering a bubble economy, only estimation of the CEV parameter could do that 
with a good deal of certainty, and furthermore if we suspected that we were entering a 
bubble and tried to compensate by changing some of these parameters in a conservative 
way (i.e., increase the LP, decrease the LI, assume higher σ or c), we could still be at the 
risk of seriously mispricing liquidity risk. 
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Notes 
1 For applications of the CEV model in finance see Chan et al. (1992) and Jacobs (2001), in the 

context of term structure and interest rate derivatives. 
2 In the wake of the financial crisis (Demirguc-Kunt and Serven, 2010; Acharya et al., 2009), 

international supervisors have recognised the importance of stress testing (ST), especially in 
the realm of credit risk, as can be seen in the revised Basel framework (BCBS, 2005, 2006, 
2009a, 2009b) and the Federal Reserve’s Comprehensive Capital Analysis and Review 
(‘CCAR’) program (Jacobs, 2013; Jacobs et al., 2015). 

3 The conditions are that τ* is almost surely increasing * *
1[ ] 1Q

k kP τ τ +< =  and is almost surely 
divergent *[ as ] 1Q

kP τ k→∞ →∞ =  (Oksendal, 2003). 

4 This condition is sometimes termed ‘no free-lunch with vanishing risk’ or NFLVR (Jeanblanc 
et al., 2009). 

5 This is partly due to the Basel II Accords (Engelmann and Rauhmeier, 2006; Cornford, 2005). 
6 We use the R package Sim.DiffProc to simulate the two-dimensional system of SDEs for asset 

value and for LGD (R Development Core Team, 2015) 



   

 

   

   
 

   

   

 

   

    The impact of asset price bubbles on liquidity risk measures 175    
 

    
 
 

   

   
 

   

   

 

   

       
 

Appendix 

Stochastic simulation of CEV asset value process 

Figure A.1 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 0.50 

 

Figure A.2 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 0.60 
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Figure A.3 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 0.70 

 

Figure A.4 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 0.80 
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Figure A.5 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 0.90 

 

Figure A.6 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.00 
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Figure A.7 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.10 

 

Figure A.8 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.20 
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Figure A.9 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.30 

 

Figure A.10 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.40 
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Figure A.11 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.50 

 

Figure A.12 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.60 
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Figure A.13 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.70 

 

Figure A.14 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.80 
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Figure A.15 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 1.90 

 

Figure A.16 Alternative loss measures and stochastic simulation paths of CEV asset value process 
(V0 = 1, μ = 0.05, σ = 0.20, c = 0.70) for value of CEV parameter θ = 2.00 

 


